Not by Design Alone! Modelling Practices to Identify Students’ Frameworks of Evolution in Real-Life Contexts
Abstract
Despite being a fundamental concept in biology, evolution continues to be one of the most challenging topics to teach in science education. Ideas of evolution emphasising anatomical or behavioural features of individuals, as opposed to the interplay between genetics and the environment, are reinforced through language and culture, making them robust and persistent in the student population at all educational levels. Model-based reasoning has been reported to be useful for students to make sense of process-based science content, combining epistemological with linguistic and value dimensions. However, there is a dearth of evidence in biology education showing how modelling can instigate epistemological maturity, specifically about issues of agency and design in evolution by natural selection. Drawing on this perspective, this study focuses on describing the nature of students’ ideas while modelling the resistance developed by a population of mosquitoes in a lagoon after an insecticide is introduced. Data collection includes students’ written reports and drawings, which were analysed with content and discourse analysis. The findings show that, at first, students believed adaptation to feature at will was a behavioural characteristic instigated by a pre-existing design. After modelling the process of natural selection, the explanations appeared to improve (from Lamarckian to Neo-Darwinian views), and most groups showed accurate explanations about adaptation.
Downloads
References
Ageitos, N., Puig, B., & Colucci-Gray, L. (2019). Examining reasoning practices and epistemic actions to explore students’ understanding of genetics and evolution. Science & Education, 28, 1209–1233. https://doi.org/10.1007/s11191-019-00086-6
Andrews, T. M., Price, R. M., Mead, L. S., McElhinny, T. L., Thanukos, A., Perez, K. E., Herreid, C. F., Terry, D. R., & Lemons, P. P. (2017). Biology undergraduates’ misconceptions about genetic Drift. CBE—Life Sciences Education, 11(3), 248–259.
Beggrow, E. P., & Nehm, R. H. (2012). Students’ mental models of evolutionary causation: Natural selection and genetic drift. Evolution: Education and Outreach, 5(3), 429–444.
Bray Speth, E., Long, T. M., Pennock, R. T., & Ebert-May, D. (2009). Using Avida-ED for teaching and learning about evolution in undergraduate introductory biology courses. Evolution: Education and Outreach, 2(3), 415–428.
Brigandt, I. (2020). How are biology concepts used and transformed? In K. Kampourakis and T. Muller (Eds), Philosophy of science for biologists (pp. 79–101). Cambridge University Press.
Clement, J. (2008). Creative model construction in scientists and students—The role of imagery, analogy, and mental simulation. Springer.
Colucci-Gray, L., & Gray, D. (2022). Critical thinking in the flesh: Movement and metaphors in a world in flux. In B. Puig & M. P. Jimenez-Aleixandre (Eds.), Critical thinking in Biology and Environmental Education: Facing challenges in a post-truth world (1 ed., pp.21–39). (Contributions from Biology Education Research). Springer.
Cooper, R. A. (2016). Natural selection as an emergent process: Instructional implications. Journal of Biological Education, 51(3), 247–260. https://doi.org/10.1080/00219266.2016.1217905
d'Apollonia, S. T., Charles, E. S., & Boyd, G. M. (2004). Acquisition of complex systemic thinking: Mental models of evolution. Educational Research and Evaluation, 10(4–6), 499–521.
Depew, D. (2020). How do concepts contribute to scientific advancements? In K. Kampourakis and T. Muller (Eds), Philosophy of science for biologists (pp. 123–146). Cambridge University Press.
Ferrari, M., & Chi, M. T. H. (1998). The nature of naive explanations of natural selection, International Journal of Science Education, 20(10), 1231–1256, https://doi.org/10.1080/0950069980201005
Gericke, N., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks—The importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755–780.
Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Springer.
Gregory, T. R. (2009). Understanding natural selection: Essential concepts and common misconceptions. Evolution: Education and Outreach, 2(2), 156–175.
Gouvea, J. S., & Passmore, C. M. (2017). ‘Models of’ versus ‘models for’. Science and Education, 26(1–2), 49–63. https://doi.org/10.1007/s11191-017-9884-4
Jablonka, E & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.
Kalinowski, S. T., Leonard, M. J., & Andrews, T. M. (2010). Nothing in evolution makes sense except in the light of DNA. [research support, non-U.S. Gov’t]. CBE Life Sciences Education, 9(2), 87–97.
Kampourakis, K. (Ed.) (2013). The philosophy of biology: A companion for educators. Springer.
Kampourakis, K., & Zogza, V. (2009). Preliminary evolutionary explanations: a basic framework for conceptual change and explanatory coherence in evolution. Science & Education, 18(10), 1313–1340.
Kampourakis K. (2020). Students' "teleological misconceptions" in evolution education: Why the underlying design stance, not teleology per se, is the problem. Evolution, 13(1), 1.
Konner, M. (2022). Is the history the same as evolution? No. Is it independent of evolution? Certainly Not. Evolutionary Psychology, 20(1), 1–18. https://doi.org/10.1177/14747049211069137
Lloyd, E.A. (2015). Model robustness as a confirmatory virtue: The case of climate science. Studies in History and Philosophy of Science Part A, 49, 58–68.
Mayer, N. (2015). Rendering life molecular. Duke University Press.
Mead, L. S., & Scott, E. C. (2010). Problem concepts in evolution part II: Cause and chance. Evolution: Education and Outreach, 3(2), 261–264. https://doi.org/10.1007/s12052-010-0231-3
Mendonça, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407–2434.
Pérez EcheverrÃa, M. P., & Scheuer, N. (2009). External representations as learning tools: An introduction. In C. Anderesen et al. (Eds.), Representational systems and practices as learning tools (pp.1–17). Sense Publishers.
Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. Morrison & M. S. Morgan (Eds.), Models as mediators (pp. 10–37). Cambridge University Press.
Nathan, M. (2022). Foundations of embodied learning. A paradigm for education. Routledge.
Nehm, R. H., & Schonfeld, I. S. (2008). Measuring knowledge of natural selection: A comparison of the CINS, an openâ€response instrument, and an oral interview. Journal of Research in Science Teaching, 45(10), 1131–1160.
Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). Kluwer and Plenum Publishers.
Oyama, S. (2000). Evolution’s eye. A systems view of the biology-culture divide. Duke University Press.
Parke, E. C., & Plutynski, A. (2020). What is the nature of theories and models in biology? In K. Kampourakis & T. Muller (Eds), Philosophy of science for biologists (pp. 55–79). Cambridge University Press.
Passmore, C. M., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Springer.
Passmore, C., & Stewart, J. (2002). A modeling approach to teaching evolutionary biology in high schools. Journal of Research in Science Teaching, 39(3), 185–204.
Peel, A., Zangori, L., Friedrichsen, P., Hayes, E., & Sadler, T. (2019). Students’ model-based explanations about natural selection and antibiotic resistance through socio-scientific issues-based learning. International Journal of Science Education, 14(4), 510–532. https://doi.org/10.1080/09500693.2018.1564084
Sainz-Elipe, S., Latorre, J. M., Escosa, R. et al. (2010). Malaria resurgence risk in southern Europe: climate assessment in an historically endemic area of rice fields at the Mediterranean shore of Spain. Malaria Journal, 9(1), 221. https://doi.org/10.1186/1475-2875-9-221
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.
Siani, M. & Yarden, A. (2021). “I think that teachers do not teach evolution Because it is complicatedâ€: Difficulties in teaching and learning evolution in Israel. International Journal of Science and Mathematics Education, 20, 481–501. https://doi.org/10.1007/s10763-021-10179-w
Tibell, L. A. E. & Harms, U. (2017). Biological principles and threshold concepts for understanding natural selection implications for developing visualizations as a pedagogic tool. Science & Education, 26, 953–973 https://doi.org/10.1007/s11191-017-9935-x
Vattam, S.S., Goel, A. K., Rugaber, S. Hmelo-Silver, C. E. Jordan, R. Gray, S., & Sinha, S. (2011). Understanding complex natural systems by articulating structure-behaviour-function models. Educational Technology & Society, 14(1), 66–81.
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.