Applying Cooperative Techniques in Teaching Problem Solving

  • Krisztina Barczi
Keywords: Cooperative techniques, Problem solving, Investigation, Open problem

Abstract

Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

Downloads

Download data is not yet available.

References

Ambrus, A. (2004). Bevezetés a matematika didaktikába. (Introduction to Mathematical Didactics). Budapest: ELTE Eötvös kiadó.

Ambrus, G. (2000). “Nyitott” és “nyitható” feladatok a tanárképzésben és a matematikaoktatásban. [“Open” and “Openable” Problems in Teacher Training and Mathematics Education]. Matematika tanítása, VIII(1), 7–15.

Burns, M. (1990). Using Groups of Four. In N. Davidson (Ed.), Cooperative-learning in Mathematics (pp. 21–46). Boston: Addison-Wesley Publishing Company.

Capacity Building Series. (2011). Asking Effective Questions. Retrieved 13 January 2013 from http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/CBS_AskingEffectiveQuestions.pdf

Crabill, C. D. (1990). Small-group Learning in the Secondary Mathematics Classroom. In N. Davidson (Ed.), Cooperative-learning in Mathematics (pp. 201–227). Boston: Addison-Wesley
Publishing Company.

Dees, R. L. (1990). Cooperation in the Mathematics Classroom: A User’s Manual. In N. Davidson (Ed.), Cooperative-learning in Mathematics (pp. 160–200). Boston: Addison-Wesley Publishing Company.

Fisher, R. (2005). Teaching Children to Think. Cheltenham: Nelson Thornes.

Gardner, M. (1988). Riddles of the Sphinx. Washington D. C.: The Mathematical Association of America.

Hähkiöniemi, M., Leppäaho, H., & Francisco, J. (2012). Model for teacher assisted technology enriched open problem solving. In T. Bergqvist (Ed.), Learning Problem Solving and Learning
Through Problem Solving, proceedings from the 13th ProMath conference, September 2011 (pp. 30–43). Umeå: UMERC.

Johnson, R. T., & Johnson, D. W. (1994). An Overview of Cooperative Learning. In J. Thousand., A. Villa, & A. Nevin (Eds.), Creativity and Collaborative Learning. Baltimore: Brookes Press.

Johnson, D. W., & Johnson, R. T. (2009). An Educational Psychology Success Story: Social Interdependence Theory and Cooperative Learning. Educational Research, 38(5), 365–379.

Józsa, K., & Székely, Gy. (2004). Kísérlet a kooperatív tanulás alkalmazására a matematika tanítása során. [Experiment for Using Cooperative Learning in Teaching Mathematics]. Magyar pedagógia, 104(3), 339–362.

Kagan, S. (2003). A Brief History of Kagan Structures. Kagan Online Magazine. San Clemente, CA: Kagan Publishing.

Kagan, S. (2004). Kooperatív tanulás. [Cooperative Learning]. Budapest: Önkonet.

Kagan, S., & Kagan, M. (1998). Multiple Intelligences: the Complete MI Book. San Cemente, CA: Kagan Publishing.

Kilpatrick, J. (1987). Problem Formulating: Where do Good Problems Come From? In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education. New Jersey: Lawrence Erlbaum
Associates Inc.

Kirkley, J. (2003). Principles for Teaching Problem Solving. Retrieved February 20 2012 from: http://citeseerx.ist.psu.edu/viewdoc/downloaddoi=10.1.1.117.8503&rep=rep1&type=pdf

Koshy, V. (2005). Action Research for Improving Practice. London: Paul Chapman Publishing.

Lénárd, F. (1987). A problémamegoldó gondolkodás. [Problem Solving Thinking]. Budapest: Akadémia kiadó.

Mayer, R. E., & Hegarty, M. (1996). The Process of Understanding Mathematical Problems. In R. J. Sternberg & T. Ben-Zeev (Eds.), The Nature of Mathematical Thinking. New Jersey: Lawrence Erlbaum Associates Inc. More Beads. Retrieved August 15 2012 from http://nrich.maths.org/2048

Pehkonen, E. (1997). Use of problem fields as a method for educational change. In E. Pehkonen (Ed.), Use of open-ended problems in mathematics classroom (pp. 73–84). Helsinki: University of Helsinki.

Pehkonen, E. (1999). Open-ended Problems: A Method for an Educational Change. In International Symposium on Elementary Maths Teaching (SEMT 99). Prague: Charles University.

Pólya, Gy. (1962). Mathematical Discovery. New York: John Wiley & Sons Inc.

Pólya, Gy. (1973). How to Solve it. New Jersey: Princeton University Press.

Slavin, R. E. (1996). Research for the Future. Research on Cooperative Learning and Achievement: What We Know, What We Need to Know. Contemporary Educational Psychology, 21, 43–69.

Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense-making in Mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334–370). New York: MacMillan.

Tóth, L. (2007). Pszichológiai vizsgálati módszerek a tanulók megismeréséhez. [Psychological Methods for Getting to Know the Students]. Debrecen: Pedellus.

Way, J. (s.d.). Problem Solving: Opening up Problems. Retrieved October 21 2013 from http://nrich.maths.org/2471

Zimmermann, B. (1986). From Problem Solving to Problem Finding in Mathematics Education. In P. Kupari (Ed.), Mathematics Education Research in Finland, Yearbook 1985 (pp. 81–103). Jyväskylä: Institute for Educational Research.

Zimmermann, B. (2009). “Open ended Problem Solving in Mathematics Instruction and some Perspectives on Research Questions” revisited – New Bricks from the Wall. In A. Ambrus & É.
Vásárhelyi (Eds.), Problem Solving in Mathematics Education, proceedings from the 11th ProMath conference, September 2009 (pp. 143–157). Budapest: ELTE.
Published
2013-12-31