Dissection of Mammalian Organs and Opinions about It among Lower and Upper Secondary School Students
Abstract
This article describes the results of a study that investigated the use of the dissection of organs in anatomy and physiology classes in Slovenian lower and upper secondary schools. Based on a sample of 485 questionnaires collected from Slovenian lower and upper secondary school students, we can conclude that dissection of mammalian organs during the courses on Human Anatomy would be a preferred activity for the majority of them. Opinions on such practices are positive, and only a minority of students would prefer to opt out. However, the practice is performed only occasionally in regular classes, or even omitted, and a number of students never participate in it. According to the results, we can suggest the dissection of mammalian organs in combination with alternatives, such as 3D models and virtual laboratories, as a preferred strategy to increase knowledge of anatomy and to raise interest in science. However, students should know that the organs they are dissecting were dedicated to human consumption, or are waste products in these processes. Opt-out options should be provided for those who do not want to participate in such activities.
Downloads
References
Akpan, J. P., & Andre, T. (2000). Using a computer simulation before dissection to help students learn anatomy. Journal of Computers in Mathematics and Science Teaching, 19(3), 297–313.
Apkan, J. P. (2002). Which comes first: Computer simulation of dissection or a traditional laboratory practical method of dissection. Electronic Journal of Science Education, 6(4). Retrieved 15. 6. 2016 from http://ejse.southwestern.edu/article/view/7686/5453.
Balcombe, J. (2000). The use of animals in higher education: Problems, alternatives, and recommendations. Washington, DC: The Humane Society Press.
Bernhardt, V., Rothkötter, H. J., & Kasten E. (2012). Psychological Stress In First Year Medical Students In Response To The Dissection Of A Human Corpse. GMS Zeitschrift fur Medizinische Ausbildung, 29(1), 1–17. doi: 10.3205/zma000782
Bishop, L. J., & Nolen, A. L. (2001). Animals in research and education: Ethical issues. Kennedy Institute of Ethics Journal, 11(1), 91–112. doi: 10.1353/ken.2001.0006
Cottam, W. W. (1999). Adequacy of medical school gross anatomy education as perceived by certain postgraduate residency programs and anatomy course directors. Clinical Anatomy, 12(1), 55–65. doi:
1002/(SICI)1098-2353
Cunningham, P. F. (2000). Animals in psychology education and student choice. Society & Animals, 8(2), 191–212.
De Villiers, R., & Monk, M. (2005). The first cut is the deepest: Reflections on the state of animal dissection in biology education. Journal of Curriculum Studies, 37(5), 583–600. doi:10.1080/00220270500041523
Demirhan, E. (2014). Miracle or Cruelty? The Sophomore Prospective Science Teachers’ Perspective of Chicken Embryonic Development. Procedia-Social and Behavioral Sciences, 152, 575–581.
Dempster, M., Black A., McCorry N., & Wilson D. (2006). Appraisal and consequences of cadaver dissection. Med Educ Onlin. 11, 16.
Entrich, H. (1996). Präparationen. Basisartikel [Dissections. Introduction to the special issue]. Unterricht Biologie, 20, 4–13.
Erceg-Hurn, D. M., & Mirosevich V. M., (2008). Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. The American psychologist, 63(7), 591–601. doi:
1037/0003-066X.63.7.591.
Fancovicova, J., & Prokop, P. (2014). The effects of 3D plastic models of animals and cadaveric dissection on students’ perceptions of the internal organs of animals. Journal of Baltic Science Education. 13(4), 767–775.
Field, A. (2009). Discovering statistics using SPSS (3rd edition). London: Sage Publications.
Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491.
Fredieu, J. R., Kerbo, J., Herron, M., Klatte, R., & Cooke, M. (2015). Anatomical Models: a Digital Revolution. Medical Science Educator, 25(2), 183–194.
Holstermann, N., Grube, D., & Bögeholz, S. (2009). The influence of emotion on students’ performance in dissection exercises. Journal of Biological Education, 43(4), 164–168. doi:
1080/00219266.2009.9656177
Hug, B. (2008). Re-examining the practice of dissection: What does it teach? Journal of Curriculum Studies, 40(1), 91–105. doi: 10.1080/00220270701484746
ISCED: International Standard Classification of Education, (2011). Retrieved 28. 8. 2015 from http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx.
Jukes, N., & Chiuia, M. (2003). From guinea pig to computer mouse: Alternative methods for a progressive, humane education (2nd edition). Leicester: InterNICHE.
Kerby, J., Shukur, Z. N. & Shalhoub, J. (2011). The relationships between learning outcomes and methods of teaching anatomy as perceived by medical students. Clinical Anatomy, 24(4), 489–497. doi: 10.1002/ca.21059
Lalley, J. P., Piotrowski, P. S., Battaglia, B., Brophy, K., & Chugh, K. (2010). A comparison of V-Frog© to physical frog dissection. International Journal of Environmental and Science Education, 5(2), 189–200.
Lombardi, S. A., Hicks, R. E., Thompson, K. V., & Marbach-Ad, G. (2014). Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions. Advances in Physiology Education. 38(1), 80–86. doi: 10.1152/
advan.00154.2012
Macchi, V., Porzionato, A., Stecco, C., & Caro, R. (2014). Evolution of the anatomical theatre in Padova. Anatomical sciences education, 7(6), 487–493.
Maloney, R. (2005). Exploring virtual fetal pig dissection as a learning tool for female high school biology students. Educational Research and Evaluation, 11(6), 591–603. doi: 10.1080/13803610500264823
Marr, R. K. (2001). Dissection: Where and when is it appropriate in the teaching laboratory? Journal of Applied Animal Welfare Science, 4(2), 139–141. doi: 10.1207/S15327604JAWS0402_7
Mattheis, A., Ingram, D., Jensen, M. S., & Jackson. J. (2015). Examining high school anatomy and physiology teacher experience in a cadaver dissection laboratory and impacts on practice. International Journal of Science and Mathematics Education. 13(3), 535–559. doi: 10.1007/s10763-013-
-8
Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen [Gaining knowledge as scientific reasoning]. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung [Theories in biologiedidactic research] (pp. 177–186). Berlin: Springer.
McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using threeâ€dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479–486.
National Science Teachers Association [NSTA] (2005). Responsible use of live animals and dissection in the science classroom. NSTA Position Statement. Retrieved 3. 11. 2015 from http://www.nsta.org/docs/PositionStatement_LiveAnimalsAndDissection.pdf.
Oakley, J. (2009). Under the knife: Animal dissection as a contested school science activity. Journal for Activist Science and Technology Education, 1(2), 59–67.
Oakley, J. (2011). Science teachers and the dissection debate: Perspectives on animal dissection and alternatives. International Journal of Environmental & Science Education, 7(2), 253–267.
Osenkowski, P., Green, C., Tjaden, A., & Cunniff, P. (2015). Evaluation of Educator & Student Use of & Attitudes toward Dissection & Dissection Alternatives. The American Biology Teacher, 77(5), 340–346.
Peat, M., & Taylor, C. (2005). Virtual biology: how well can it replace authentic activities?. International Journal of Innovation in Science and Mathematics Education (formerly CAL-laborate International), 13(1), 21–24.
Richardson, D. (2011). Is virtual reality a useful tool in the teaching of physiology? Advances in Physiology Education, 35, 117–119. doi: 10.1152/advan.00002.2011
Saltarelli, A. J., Roseth, C. J., & Saltarelli, W. A. (2014). Human cadavers Vs. multimedia simulation: A study of student learning in anatomy. Anatomical sciences education, 7(5), 331–339.
Sapontzis, S. F. (1995). We should not allow dissection of animals. Journal of Agricultural and Environmental Ethics, 8(2), 181–189. doi: 10.1007/BF02251883
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.
Å orgo, A., & KocijanÄiÄ, S. (2011). Presentation of laboratory sessions for science subjects in Slovenian upper secondary schools. Journal of Baltic Science Education, 10(2), 98–113.
Šorgo, A., Usak, M., Aydogdu, M., Keles, O., & Ambrozic-Dolinsek, J. (2011). Biology teaching in upper secondary schools: comparative study between Slovenia and Turkey. Energy education Science and Technology Part B: Social and Educational Studies, 3(3), 305–314.
Šorgo, A., & Špernjak, A. (2007). Profesorice bi morale bit zgoraj brez ali kaj spremeniti v pouku biologije [Professors should be topless or what to change in biology class]. Vzgoja in izobraževanje, 38(5), 37–40.
Šorgo, A., & Špernjak, A. (2012). Practical work in Biology, Chemistry and Physics at lower secondary and general upper secondary schools in Slovenia. Eurasia Journal of Mathematics, Science & Technology Education, 8(1), 11–19.
VirtiÄ, M. P., & Å orgo, A. (2016). Can we expect to recruit future engineers among students who have never repaired a toy?. Eurasia Journal of Mathematics, Science & Technology Education, 12(2), 249–266.
Winkelmann, A. (2007). Anatomical dissection as a teaching method in medical school: A review of the evidence. Medical Education, 41(1), 15–22. doi: 10.1111/j.1365-2929.2006.02625.x
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.