Promoting Problem-Solving Skills by Engaging Students in Detecting, Explaining and Fixing Errors in Applications of the First Derivative in Individual and Collaborative Settings

  • Ibnu Rafi International Graduate Program of Education and Human Development, National Sun Yat-sen University, Kaohsiung, Taiwan
  • Wahyu Setyaningrum Department of Mathematics Education, Universitas Negeri Yogyakarta, Sleman, Indonesia
  • Heri Retnawati Department of Mathematics Education and Department of Educational Research and Evaluation, Universitas Negeri Yogyakarta, Sleman, Indonesia https://orcid.org/0000-0002-1792-5873
Keywords: erroneous examples, problem-solving skills, individual setting, collaborative setting

Abstract

Learning from erroneous examples that involve step-by-step problem solutions containing errors that can be detected, explained and fixed by students could be beneficial for the students’ problem-solving skills. Previous studies have investigated the effectiveness of erroneous examples in mathematics learning, but less attention has been focused on the effectiveness of the use of erroneous examples in individual and collaborative settings when erroneous examples are combined with self-explanation prompts and practice problems addressing students’ problem-solving skills. The present quasi-experimental study with a post-test only non-equivalent group design was therefore intended to examine the extent to which presenting erroneous examples in individual and collaborative settings could promote students’ problem-solving skills. The results suggest that the use of erroneous examples in both settings is effective in promoting students’ problem-solving skills, with neither setting being better than the other. In light of these results, teachers can vary the use of these learning settings in facilitating their students’ learning through erroneous examples.

Downloads

Download data is not yet available.

References

Adams, D., Mclaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & van Velsen, M. (2012). Erroneous examples versus problem solving: Can we improve how middle school students learn decimals?. In N. Miyakem, D. Peebles, & R. P. Coppers (Eds.), Proceedings of the 34th Meeting of the Cognitive Science Society (CogSci 2012) (pp. 1260–1265). Cognitive Science Society. http://www.cs.cmu.edu/~bmclaren/pubs/AdamsEtAl-AdaptErrExStudy-CogSci2012.pdf

Antunović-Piton, B., & Baranović, N. (2022). Factors affecting success in solving a stand-alone geometrical problem by students aged 14 to 15. Center for Educational Policy Studies Journal, 12(1), 55–79. https://doi.org/10.26529/cepsj.889

Barbieri, C., & Booth, J. L. (2016). Support for struggling students in algebra: Contributions of incorrect worked examples. Learning and Individual Differences, 48, 36–44. https://doi.org/10.1016/j.lindif.2016.04.001

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 25, 24–34. https://doi.org/10.1016/j.learninstruc.2012.11.002

Booth, J. L., McGinn, K. M., Young, L. K., & Barbieri, C. (2015). Simple practice doesn’t always make perfect: Evidence from the worked example effect. Policy Insights from the Behavioral and Brain Sciences, 2(1), 24–32. https://doi.org/10.1177/2372732215601691

Brown, J., Skow, K., & the IRIS Center. (2016). Mathematics: Identifying and addressing student errors. IRIS Center. https://iris.peabody.vanderbilt.edu/wp-content/uploads/pdf_case_studies/ics_matherr.pdf

Bruning, R. H., Schraw, G. J., & Norby, M. M. (2010). Cognitive psychology and instruction (5th ed.). Pearson.

Burkhardt, H., & Swan, M. (2017). Design and development for large-scale improvement. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on Mathematical Education (pp. 177–200). Springer Open. https://doi.org/10.1007/978-3-319-62597-3_12

Chen, X., Mitrovic, A., & Mathews, M. (2016). Do erroneous examples improve learning in addition to problem solving and worked examples? In A. Micarelli, J. Stamper, & K. Panourgia (Eds.), The 13th International Conference on Intelligent Tutoring Systems, ITS 2016, Vol. 9684 (pp. 13–22). Springer. https://doi.org/10.1007/978-3-319-39583-8_2

Durkin, K. (2012). The effectiveness of incorrect examples and comparison when learning about decimal magnitude [Doctoral dissertation, Vanderbilt University]. https://etd.library.vanderbilt.edu/etd-04022012-004633

Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22(3), 206–214. https://doi.org/10.1016/j.learninstruc.2011.11.001

Fadillah, S. (2009). Kemampuan pemecahan masalah matematis dalam pembelajaran matematika [Mathematical problem-solving abilities in mathematics learning]. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA [Proceedings of the National Seminar on Research, Educcation and Application of Mathematics and Science], 553–558. https://eprints.uny.ac.id/12317/1/M_Pend_35_Syarifah.pdf

Fitzsimmons, C. J., Morehead, K., Thompson, C. A., Buerke, M., & Dunlosky, J. (2021). Can feedback, correct, and incorrect worked examples improve numerical magnitude estimation precision?. The Journal of Experimental Education, 91(1), 20–45. https://doi.org/10.1080/00220973.2021.1891009

Ganesan, R., & Dindyal, J. (2014). An investigation of students’ errors in logarithms. In J. Anderson, M. Cavanagh, & A. Prescott (Eds.), Proceedings of the 37th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 231–238). MERGA.

Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes?. Learning and Instruction, 17(6), 612–634. https://doi.org/10.1016/j.learninstruc.2007.09.008

Hadi, F. S. (2012). Pedagogical content knowledge (PCK) guru matematika di SMA Negeri 1 Klaten terkait pengetahuan guru tentang konsepsi dan miskonsepsi yang dimiliki oleh siswa dalam pembelajaran materi fungsi naik, fungsi turun, dan titik stasioner [Pedagogical content knowledge (PCK) of mathematics teachers at SMA Negeri 1 Klaten related to teacher knowledge about conceptions and misconceptions that students have in learning material about increasing functions, decreasing functions and stationary points] [Undergraduate thesis, Sanata Dharma University]. https://repository.usd.ac.id/7339/

Hartmann, C., van Gog, T., & Rummel, N. (2021). Preparatory effects of problem solving versus studying examples prior to instruction. Instructional Science, 49(1), 1–21. https://doi.org/10.1007/s11251-020-09528-z

Heemsoth, T., & Heinze, A. (2014). The impact of incorrect examples on learning fractions: A field experiment with 6th grade students. Instructional Science, 42(4), 639–657. https://doi.org/10.1007/s11251-013-9302-5

Heemsoth, T., & Heinze, A. (2015). Secondary school students learning from reflections on the rationale behind self-made errors: A field experiment. Journal of Experimental Education, 84(1), 98–118. https://doi.org/10.1080/00220973.2014.963215

Huang, X. (2017). Example-based learning: Effects of different types of examples on student performance, cognitive load and self-efficacy in a statistical learning task. Interactive Learning Environments, 25(3), 283–294. https://doi.org/10.1080/10494820.2015.1121154

Isotani, S., Adams, D., Mayer, R. E., Durkin, K., Rittle-Johnson, B., & McLaren, B. M. (2011). Can erroneous examples help middle-school students learn decimals?. In C. D. Kloos, D. Gillet, R. M. C. García, F. Wild, & M. Wolpers (Eds.), Sixth European Conference on Technology Enhanced Learning: Towards Ubiquitous Learning, Vol. 6964 (pp. 181–195). Springer. https://doi.org/10.1007/978-3-642-23985-4_15

Kertu, N. W., Dantes, N., & Suarni, N. K. (2015). Pengaruh program pembelajaran individual berbantuan media permainan dakon terhadap minat belajar dan kemampuan berhitung pada anak kelas III tunagrahita sedang SLB C1 Negeri Denpasar tahun pelajaran 2014/2015 [The influence of individual learning programs assisted by dakon game media on interest in learning and numeracy skills in class III children with medium mental retardation at SLB C1 Denpasar State in the 2014/2015 academic year]. E-Journal Program Pascasarjana Universitas Pendidikan Ganesha, 5(1), 1–11. https://doi.org/10.23887/jpepi.v5i1.1557

Khasawneh, A. A., Al-Barakat, A. A., & Almahmoud, S. A. (2022). The effect of error analysis based learning on proportional reasoning ability of seventh-grade students. Frontiers in Education, 7, 1–13. https://doi.org/10.3389/feduc.2022.899288

Khasawneh, A. A., Al-Barakat, A. A., & Almahmoud, S. A. (2023). The impact of mathematics learning environment supported by error-analysis activities on classroom interaction. Eurasia Journal of Mathematics, Science and Technology Education, 19(2), 1–17. https://doi.org/10.29333/ejmste/12951

Koçak, Z. F., Bozan, R., & Işik, Ö. (2009). The importance of group work in mathematics. Procedia - Social and Behavioral Sciences, 1(1), 2363–2365. https://doi.org/10.1016/j.sbspro.2009.01.414

Krulik, S., & Rudnick, J. A. (1988). Problem solving: A handbook for elementary school teachers. Allyn & Bacon.

Laal, M., & Laal, M. (2012). Collaborative learning: What is it?. Procedia - Social and Behavioral Sciences, 31, 491–495. https://doi.org/10.1016/j.sbspro.2011.12.092

Lange, K. E., Booth, J. L., & Newton, K. J. (2014). Learning algebra from worked examples. The Mathematics Teacher, 107(7), 534–540. https://doi.org/10.5951/mathteacher.107.7.0534

McGinn, K. M., Lange, K. E., & Booth, J. L. (2015). A worked example for creating worked examples. Mathematics Teaching in the Middle School, 21(1), 26–33. https://doi.org/10.5951/mathteacmiddscho.21.1.0026

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., Sosnovsky, S., Isotani, S., & Velsen, M. (2012). To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle school math students. In A. Ravenscroft, S. Lindstaedt, C. D. Kloos, & D. Hernández-Leo (Eds.), Proceedings of EC-TEL 2012: The 7th European Conference on Technology Enhanced Learning, Vol. 7563 (pp. 222–235). Springer. https://doi.org/10.1007/978-3-642-33263-0_18

McLaren, B. M., Adams, D. M., & Mayer, R. E. (2015). Delayed learning effects with erroneous examples: A study of learning decimals with a web-based tutor. International Journal of Artificial Intelligence in Education, 25(4), 520–542. https://doi.org/10.1007/s40593-015-0064-x

Mink, D. V. (2010). Strategies for teaching mathematics. Shell Education.

Panitz, T. (1999). Collaborative versus cooperative learning: A comparison of the two concepts which will help us understand the underlying nature of interactive learning. ERIC. https://files.eric.ed.gov/fulltext/ED448443.pdf

Papadopoulos, I., & Kyriakopoulou, P. (2022). Reading mathematical texts as a problem-solving activity: The case of the principle of mathematical induction. Center for Educational Policy Studies Journal, 12(1), 35–53. https://doi.org/10.26529/cepsj.881

Polya, G. (1985). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press.

Putri, H. A. (2013). Identifikasi kesulitan siswa dalam menyelesaikan soal pada materi aplikasi turunan untuk siswa kelas XI IPS 1 SMA BOPKRI II Yogyakarta [Identify students’ difficulties in solving questions on derivative application material for class XI IPS 1 SMA BOPKRI II Yogyakarta] [Undergraduate thesis, Sanata Dharma University]. http://repository.usd.ac.id/8524/

R Core Team. (2021). R: A Language and environment for statistical computing (4.1) [Computer software]. https://cran.r-project.org

Rafi, I., & Retnawati, H. (2018). What are the common errors made by students in solving logarithm problems?. Journal of Physics: Conference Series, 1097(1), 1–9. https://doi.org/10.1088/1742-6596/1097/1/012157

Rafi, I., & Setyaningrum, W. (2019). Learning mathematics from erroneous example in individual and collaborative setting: Is it effective to facilitate students’ mathematical disposition?. Journal of Physics: Conference Series, 1320(1), 1–8. https://doi.org/10.1088/1742-6596/1320/1/012097

Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group work settings. Educational Psychology, 30(3), 349–367. https://doi.org/10.1080/01443411003659960

Retnowati, E., Ayres, P., & Sweller, J. (2016). Can collaborative learning improve the effectiveness of worked examples in learning mathematics?. Journal of Educational Psychology, 109(5), 666-679. https://doi.org/10.1037/edu0000167

Reynolds, C. R., Livingston, R. B., & Willson, V. (2010). Measurement and assessment in education (2nd ed.). Pearson Education.

Rogers, J., & Révész, A. (2020). Experimental and quasi-experimental designs. In J. McKinley & H. Rose (Eds.), The Routledge handbook of research methods in applied linguistics (pp. 133-143). Routledge.

Rudner, L. M., & Schafer, W. D. (Eds.). (2002). What teachers need to know about assessment. National Education Association of the United States.

Rumasoreng, M. I., & Sugiman, S. (2014). Analisis kesulitan matematika siswa SMA/MA dalam menyelesaikan soal setara UN di Kabupaten Maluku Tengah [Analysis of the mathematics difficulties of SMA/MA students in solving National Examination equivalent questions in Central Maluku Regency. Jurnal Riset Pendidikan Matematika [Journal of Mathematics Education Research], 1(1), 22–34. https://doi.org/10.21831/jrpm.v1i1.2661

Rushton, S. J. (2018). Teaching and learning mathematics through error analysis. Fields Mathematics Education Journal, 3(1), 1–12. https://doi.org/10.1186/s40928-018-0009-y

Sakti, N. D. C. A. (2017). Diagnosis kesalahan siswa kelas XI IPA SMA N 10 Yogyakarta pada pokok bahasan turunan [Diagnosis of mistakes made by class XI IPA students at SMA N 10 Yogyakarta on derivative subjects [Undergraduate thesis, Sanata Dharma University]. https://repository.usd.ac.id/10087/

Sarwadi, H. R. H., & Shahrill, M. (2014). Understanding students’ mathematical errors and misconceptions: The case of year 11 repeating students. Mathematics Education Trends and Research, 2014, 1–10.

Sern, L. C., Salleh, K. M., Sulaiman, N. L., Mohamad, M. M., & Yunos, J. M. (2015). Comparison of example-based learning and problem-based learning in engineering domain. Universal Journal of Educational Research, 3(1), 39–45. https://doi.org/10.13189/ujer.2015.030106

Sofroniou, A., & Poutos, K. (2016). Investigating the effectiveness of group work in mathematics. Education Sciences, 6(3), 1–15. https://doi.org/10.3390/educsci6030030

Sultan, S., Kanwal, F., & Khurram, S. (2011). Effectiveness of learning styles: A comparison between students learning individually and students learning collaboratively. Journal of Educational Research, 14(2), 32–39.

Tambychik, T., & Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say?. Procedia - Social and Behavioral Sciences, 8(1), 142–151. https://doi.org/10.1016/j.sbspro.2010.12.020

The jamovi project. (2022). Jamovi (2.3) [Computer software]. https://www.jamovi.org

Tias, A. A. W., & Wutsqa, D. U. (2015). Analisis kesulitan siswa SMA dalam pemecahan masalah matematika kelas XII IPA di Kota Yogyakarta [Analysis of high school students’ difficulties in solving mathematics problems in class XII IPA in Yogyakarta City]. Jurnal Riset Pendidikan Matematika [Journal of Mathematics Education Research], 2(1), 28–39. https://doi.org/10.21831/jrpm.v2i1.7148

Tsovaltzi, D., Mclaren, B. M., Melis, E., Meyer, A., Dietrich, M., & Goguadze, G. (2010). Learning from erroneous examples. In V. Aleven, J. Kay, & J. Mostow (Eds.), The 10th International Conference on Intelligent Tutoring Systems, ITS 2010, Vol. 6095 (pp. 420–422). Springer. https://doi.org/10.1007/978-3-642-13437-1_90

Tsovaltzi, D., Melis, E., McLaren, B. M., Meyer, A. K., Dietrich, M., & Goguadze, G. (2010). Learning from erroneous examples: When and how do students benefit from them? In M. Wolpers, P. A. Kirschner, M. Scheffel, S. Lindstaedt, & V. Dimitrova (Eds.), Proceedings of the 5th European Conference on Technology Enhanced Learning, Sustaining TEL: From Innovation to Learning and Practice (pp. 357–373). Springer. https://doi.org/10.1007/978-3-642-16020-2_24

van Blerkom, M. L. (2009). Measurement and statistics for teachers. Routledge.

van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10(4), 311–330. https://doi.org/10.1016/S0959-4752(00)00002-5

Wang, M., Yang, Z., Liu, S.-Y., Cheng, H. N. H., & Liu, Z. (2015). Using feedback to improve learning: Differentiating between correct and erroneous examples. 2015 International Symposium on Educational Technology, 99–103. https://doi.org/10.1109/ISET.2015.28

Wells, C. S., & Wollack, J. A. (2003). An instructor’s guide to understanding test reliability. University of Wisconsin – Madison. https://testing.wisc.edu/Reliability.pdf

Yang, Z., Wang, M., Cheng, H. N. H., Liu, S., Liu, L., & Chan, T.-W. (2016). The effects of learning from correct and erroneous examples in individual and collaborative settings. The Asia-Pacific Education Researcher, 25(2), 219–227. https://doi.org/10.1007/s40299-015-0253-2

Zhao, H., & Acosta-Tello, E. (2016). The impact of erroneous examples on students’ learning of equation solving. Journal of Mathematics Education, 9(1), 57–68.

Published
2025-02-12
How to Cite
Rafi, I., Setyaningrum, W., & Retnawati, H. (2025). Promoting Problem-Solving Skills by Engaging Students in Detecting, Explaining and Fixing Errors in Applications of the First Derivative in Individual and Collaborative Settings. Center for Educational Policy Studies Journal. https://doi.org/10.26529/cepsj.1779