Primary Programming: Teachers’ Attitudes and Skills in the Light of Computing Reform
Abstract
Two global trends that can be observed in computing education all over the world are moving the beginning of teaching computing as a compulsory school subject to primary education and moving from the teaching of user approaches to digital technologies to computer science content. The Czech Republic is currently the scene of such changes within the ongoing reform of informatics education. This paper presents the visions and principles that have served as the foundational framework for the reform initiative. A significant term for the introduction of computing in schools is programming. The key figure for the implementation of the changes is the primary school teacher who has no background in computer science and no experience in the subject as a student. The topic of our inquiry is therefore the attitudes of primary teachers towards teaching programming at the time of the ongoing school reform. The aim of the research is to identify the personal, pedagogical and environmental factors that influence teachers’ attitudes towards teaching programming. We measured programming attitudes using Sun’s Teacher Programming Attitude Scale, while the relationship of these attitudes to teachers’ computational thinking was explored using Bebras Challenge tasks. A survey of primary school teachers revealed a positive attitude towards the teaching of programming, coupled with very good computing skills. The study also found that previous experience in teaching programming is a significant factor in influencing teachers’ positive attitudes towards the subject.
Downloads
References
Bati, K., & İkbal Yetişir, M. (2021). Examination of Turkish middle school STEM teachers’ knowledge about computational thinking and views regarding information and communications technology. Computers in the Schools, 38(1), 57–73.
Blaho, A. (2012). Informatika v štátnom vzdelávacom programe [Informatics in a state educational programme]. In I. Kalaš (Ed.), DidInfo 2012 (pp. 7–14). Katedra informatiky, FPV, Univerzita Mateja Bela MPC, Regionálne pracovisko v Banskej Bystrici UIPŠ, Školské výpočtové stredisko Banská Bystrica. http://www.didinfo.net/images/DidInfo/files/didinfo_2012.pdf
Blaho, A., & Salanci, Ľ. (2011). Informatics in primary school: Principles and experience. In I. Kalaš, & R. T. Mittermeid (Eds.), Informatics in Schools. Contributing to 21st Century Education (pp. 129–142). Springer.
Bosco, A., Santiveri, N., & Tesconi, S. (2019). Digital making in educational projects. Center for Educational Policy Studies Journal, 9(3), 51–73. https://doi.org/10.26529/cepsj.629
Bryndová, L. (2021). The approach of computer science teachers to the concepts of computational thinking and the implementation of its development in primary schools. Journal of Technology and Information Education, 13(2), 151–163.
Dagienė, V., & Futschek, G. (2008). Bebras International Contest on Informatics and Computer Literacy: Criteria for good tasks. In R. T. Mittermeir, & M. M. Sysło (Eds.), Informatics education – Supporting computational thinking (pp. 19–30). Springer. https://doi.org/10.1007/978-3-540-69924-8_2
Gander, W. (2014) Informatics and general education. In Y. Gülbahar, & K. Erinç (Eds.), Informatics in schools, teaching and learning perspectives (pp. 1–7). Springer.
Geldreich, K., Talbot, M., & Hubwieser, P. (2018). Off to new shores: Preparing primary school teachers for teaching algorithmics and programming. In A. Mühling, & Q. Cutts (Eds.), WiPSCE 2018: Proceedings of the 13th Workshop in Primary and Secondary Computing Education (pp. 1–6). https://doi.org/10.1145/3265757.3265783
Günbatar, M.S., & Bakırcı, H. (2019). STEM teaching intention and computational thinking skills of pre-service teachers. Educ Inf Technol, 24, 1615–1629. https://doi.org/10.1007/s10639-018-9849-5
I4ALL. (2025). Informatics for All Coalition. https://www.informaticsforall.org/
JU. (2017). Jihočeská univerzita. PRIM project homepage. Jihočeská univerzita v Českých Budějovicích. https://imysleni.cz
JU. (2024). Bobřík informatiky, archiv úloh [Website of the Bebras Challenge contest, archive of Bebras tasks]. Jihočeská univerzita v Českých Budějovicích. https://www.ibobr.cz/test/archiv
JU. (2025). Bobřík informatiky [Website of the Bebras Challenge contest]. Jihočeská univerzita v Českých Budějovicích. https://www.ibobr.cz/
K12CS. (2016). K–12 Computer Science Framework. Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science Initiative. http://www.k12cs.org
Kodelja, Z. (2021). Consequentialist reasons for some education reforms. Center for Educational Policy Studies Journal, 11(2), 111–124. https://doi.org/10.26529/cepsj.1061
Korhonen, T., Salo, L., Laakso, N., Seitamaa, A., Sormunen, K., Kukkonen, M., & Forsström, H. (2023). Finnish teachers as adopters of educational innovation: Perceptions of programming as a new part of the curriculum. Computer Science Education, 33(1), 94–116. https://doi.org/10.1080/08993408.2022.2095595
MŠMT. (2005). The Education Act. Ministerstvo školství, mládeže a tělovýchovy České republiky. https://www.msmt.cz/dokumenty-3/act-no-561-2004-collection-of-law-on-pre-school-basic
MŠMT. (2014). Strategie digitálního vzdělávání [Strategy of digital education]. Ministerstvo školství, mládeže a tělovýchovy České republiky. https://www.msmt.cz/uploads/DigiStrategie.pdf
MŠMT. (2021). Rámcový vzdělávací program pro základní vzdělávání [Frame educational programme for basic education]. Ministerstvo školství, mládeže a tělovýchovy České republiky. https://www.edu.cz/wp-content/uploads/2021/07/RVP-ZV-2021.pdf
NPI ČR. (2025). Klíčová kompetence digitální [Key digital competence]. National Pedagogical Institute of the Czech Republic. https://prohlednout.rvp.cz/zakladni-vzdelavani/klicove-kompetence/kdi
NÚV. (2005). Rámcový vzdělávací program pro základní vzdělávání – základní verze [Frame educational programme for basic education – basic version]. National Institute for Education of the Czech Republic. http://www.nuv.cz/file/493/
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Pavlas, T., Zatloukal, T., & Andrys, O. (2021). Návrat žáků k prezenčnímu vzdělávání v základních a středních školách [Return of students to full-time education in primary and secondary schools]. Czech School Inspectorate. https://www.csicr.cz/cz/Dokumenty/Tematicke-zpravy/Tematicka-zprava-%E2%80%93-Navrat-zakuk-prezencnimu-vzdel
Perla, L., Vinci, V., & Agrati, L. S. (2025). The Italian way to the Europeanisation of teacher education: An analysis of reforms and the ongoing experience of digital transformation. Center for Educational Policy Studies Journal, 15(1), 147–174. https://doi.org/10.26529/cepsj.1714
Piedade J., Dorotea N., Pedro, A. & Matos, J. F. (2020). On teaching programming fundamentals and computational thinking with educational robotics: A didactic experience with pre-service teachers. Education Sciences, 10(9), Article 214. https://doi.org/10.3390/educsci10090214
PRIM. (2021). Modelové školní vzdělávací programy [Exemplary school educational programmes]. Jihočeská univerzita v Českých Budějovicích. https://imysleni.cz/svp
Rambousek, V., Štípek, J., & Wildová, R. (2015). ICT competencies and their development in primary and lower-secondary schools in the Czech Republic. Procedia - Social and Behavioral Sciences, 171, 535–542.
Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects, passion, peers, and play. MIT Press.
Rich, P. J., Mason S. L., & O’Leary J. (2021). Measuring the effect of continuous professional development on elementary teachers’ self-efficacy to teach coding and computational thinking. Computers & Education, 168, Article 104196. https://doi.org/10.1016/j.compedu.2021.104196
Sun, L., & Zhou, D. (2023). K-12 teachers’ programming attitudes among different disciplines: Analysis of influential factors. Journal of Computer Assisted Learning, 40(2), 538–556.
Sysło. M., & Kwiatkowska, A. (2015). Introducing a new computer science curriculum for all school levels in Poland. In A. Brodnik (Ed.), Informatics in schools. Curricula, competencies, and competitions (pp. 141–154). Springer.
The Royal Society. (2012). Shut down or restart? The way forward for computing in UK schools. https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
Tucker, A. (Ed.). (2003). A model curriculum for K–12 computer science: Final report of the ACM K–12 task force curriculum committee. Association for Computing Machinery. https://people.cs.vt.edu/~kafura/CS6604/Papers/K-12ModelCurr2ndEd.pdf
UMB. (2024). DidInfo Homepage. Fakulta prírodných vied, Univerzita Mateja Bela. http://www.didinfo.net/en
UNESCO. (2002). Information and communication technology in education – A curriculum for schools and programme for teacher development. UNESCO.
Vaníček, J. (2021). Towards a compulsory computing curriculum at primary and lower-secondary schools: the case of Czechia. In E. Barendsen, & C. Chytas (Eds.), Informatics in schools. Rethinking computing education ISSEP 2021 (pp. 109–120). https://doi.org/10.1007/978-3-030-90228-5_9
Vaníček, J., & Šimandl, V. (2020). Participants’ perception of tasks in an informatics contest. In K. Kori, & M. Laanpere (Eds.), Informatics in Schools. Engaging Learners in Computational Thinking (pp. 55–65). Springer. https://doi.org/10.1007/978-3-030-63212-0_5
Wangenheim, A. von, Wangenheim, C. G. von, Pacheco, F. S., Hauck, J. C. R., & Ferreira, M. N. F. (2017). Motivating teachers to teach computing in middle school: A case study of a physical computing taster workshop for K-12 teachers. International Journal of Computer Science Education in Schools, 1(4), 35–49. https://doi.org/10.21585/ijcses.v1i4.17
Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Shoop, R. (2018). Attending to structural programming features predicts differences in learning and motivation. Journal of Computer Assisted Learning, 34(2), 115–128.
Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging competence domain. In M. Mulder (Ed.), Competence-based vocational and professional education: Bridging the worlds of work and education, 23 (pp. 1051–1067). Springer International Publishing. https://doi.org/10.1007/978-3-319-41713-4_49
Zapata-Cáceres, M., Marcelino, P., El-Hamamsy, L., & Martín-Barosso, E. (2024). A Bebras Computational Thinking (ABC-Thinking) program for primary school: Evaluation using the competent computational thinking test. Education and Information Technologies, 29(12), 14969–14998.
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

