MERIA – Razmejitvene črte: izkušnje z dvema inovativnima učnima gradivoma
Povzetek
Oblikovanje preiskovalnih nalog in problemskih situacij pri dnevnem poučevanju matematike je še vedno izziv. V tem prispevku prikazujemo vključevanje dveh nalog v pouk matematike kot primera didaktičnih scenarijev preiskovalnega načina poučevanja matematike in analizo učiteljevih implementacij teh scenarijev v svojih razredih. Prispevek je nastal pod okriljem Erasmus+, projekta MERIA – matematično izobraževanje: relevantno, zanimivo in uporabno, katerega cilj je spodbujati učne situacije, ki imajo za učence pomen, so zanje motivirani, saj omogočajo samostojno odkrivanje izbranih matematičnih pojmov. Scenariji MERIA kot inovativno učno gradivo za matematično izobraževanje v srednjih šolah zajemajo izbrane vsebine učnega načrta in temeljijo na dveh dobro utemeljenih teorijah matematičnega izobraževanja: realistična matematika in teorija didaktičnih situacij. S splošnim imenom Razmejitvene črte (razmejitvene črte – uvod in razmejitvena množica – parabola) je namen scenarijev podpreti preučevanje študentov o množicah točk v ravnini, ki so enako oddaljeni od danih geometrijskih objektov: pravokotnica kot premica, ki je enako oddaljena od dveh točk, ter parabola kot krivulja, ki je enako oddaljena od točke in premice. V prispevku prikazujemo proces učenčevega oblikovanja znanja in učne situacije, ki za učitelja predstavljajo dobro izhodišče za nadgrajevanje učenčevega znanja. Prepoznavanje takih situacij je ključno, saj ustvarjajo prostor za nove priložnosti oz. premikanje od učenčevih odkritij do ciljnega znanja.
Prenosi
Literatura
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM - International Journal on Mathematics Education, 45(6), 797–810. https://doi.org/10.1007/s11858-013-0506-6
Brousseau, G. (1997). Theory of didactical situations in mathematics. Didactique des mathématiques 1970–1990. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47211-2
Bruder, R., & Prescott, A. (2013). Research evidence on the benefits of IBL. ZDM - International Journal on Mathematics Education, 45(6), 811–822. https://doi.org/10.1007/s11858-013-0542-2
Doorman, M., Van den Heuvel-Panhuizen, M., & Goddijn A. (2020). The emergence of meaningful geometry. In M. Van den Heuvel-Panhuizen (Ed.), National reflections on the Netherlands didactics of mathematics (pp. 281–302). ICME-13 Monographs. Springer. https://doi-org.proxy.library.uu.nl/10.1007/978-3-030-33824-4_15
Freudenthal, H. (1991). Revisiting mathematics education. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47202-3
Hersant, M., & Perrin-Glorian, M. (2005). Characterization of an ordinary teaching practice with the help of the theory of didactic situations. Educational Studies in Mathematics, 59, 113–151. https://doi:10.1007/s10649-005-2183-z
Holbrook, J., & Rannikmäe, M. (2014). The philosophy and approach on which the PROFILES project is based. CEPS Journal, 4, 9–29.
Gravesen, K.F., Grønbæk, N., & Winsløw, C. (2017). Task design for students’ work with basic theory in analysis: The cases of multidimensional differentiability and curve integrals. International Journal of Research in Undergraduate Mathematics Education, 3, 9–33. https://doi.org/10.1007/s40753-016-0036-z
Holzäpfel, L., Rott, B., & Dreher, U. (2016). Exploring perpendicular bisectors: The water well problem. In A. Kuzle, B. Rott, & T. Hodnik Čadež (Eds.), Problem solving in the mathematics classroom, perspectives and practices from different countries (pp. 119–132). WTM, Verlag für wissenschaftliche Texte und Medien.
Kieran, C., Doorman, M., & Ohtani M. (2014). Frameworks and principles for task design. In A. Watson, & M. Ohtani (Eds.), Task design in mathematics education. Proceedings of ICMI Study 22. ICMI Study 22, Oxford, United Kingdom (pp. 19–80). https://link.springer.com/chapter/10.1007/978-3-319-09629-2_2#citeas
Rott, B. (2020). Teachers’ behaviors, epistemological beliefs, and their interplay in lessons on the topic of problem solving, International Journal of Science and Mathematics Education, 18, 903–924. https://doi.org/10.1007/s10763-019-09993-0
Sherin, M.G. (2002). A balancing act: Developing a discourse community in a mathematics classroom. Journal of Mathematics Teacher Education, 5, 205–233. https://doi-org.proxy.library.uu.nl/10.1023/A:1020134209073
Winsløw, C. (ed.). (2017). MERIA practical guide to inquiry based mathematics teaching. https://meria-project.eu/activities-results/practical-guide-ibmt
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

