Razlike v zahtevah digitalnih in tiskanih matematičnih učbenikov: poudarek na poglavjih o geometriji
Povzetek
Učbeniki so imeli od nekdaj pomembno vlogo pri poučevanju matematike. Naloge iz njih učenci pogosto uporabljajo, zato je bistveno, da preučimo njihove zahteve in prepoznamo priložnosti, ki jih imajo učenci za učenje matematike. Založniki zdaj izdajajo tiskane in digitalne različice učbenikov. Medtem ko so bile zahteve nalog tiskanih učbenikov dodobra analizirane po vsem svetu, morajo biti zahteve digitalnih še preiskane in sistematično razvite. Raziskava, predstavljena v tem prispevku, vključuje analizo in primerjavo nalog tiskane in digitalne različice istega učbeniškega kompleta za matematiko. Izbrano gradivo zajema pregled učbenikov od 1. do 4. razreda osnovnošolskega izobraževanja na Hrvaškem. Namen je bil ugotoviti, katere naloge so prevladujoče v tiskanih in digitalnih učbenikih, ob tem pa določiti, ali te različice ponujajo široko množico funkcij. Poleg tega so bile preučene značilnosti in zmožnosti, ki so značilne za digitalne naloge, kot sta na primer interaktivnosti in dinamičnost. Te so še posebej pomembne pri poučevanju geometrije za razumevanje vizualnih in dinamičnih geometrijskih likov in odnosov. Rezultati kažejo, da imajo naloge tiskanih in digitalnih učbenikov tradicionalne zahteve s poudarkom na odgovorih zaprtega tipa. Mimogrede, nove priložnosti, ki jih sicer ponujajo digitalne naloge, niso uresničene. Te ugotovitve razkrivajo potencialne digitalne naloge kot novo področje, ki bi ga bilo treba raziskati in razviti.
Prenosi
Literatura
Choppin, J., Carson, C., Borys, Z., Cerosaletti, C., & Gillis, R. (2014). A typology for analyzing digital curricula in mathematics education. International Journal of Education in Mathematics, Science and Technology, 2(1), 11–25.
Cohen, V. B. (1985). A reexamination of feedback in computer-based instruction: Implications for instructional design. Educational Technology, 25(1), 33–37.
Glasnović Gracin, D. (2018). Requirements in mathematics textbooks: A five-dimensional analysis of textbook exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 1003–1024.
Glasnović Gracin, D., & Kuzle, A. (2018). Drawings as external representations of children’s mathematical ideas and emotions in geometry lessons. CEPS – Center for Educational Policy Studies Journal, 8(2), 31–53. https://doi.org/10.26529/cepsj.299
Glasnović Gracin, D., & Kuzle, A. (2019). Fundamentalne ideje za nastavu geometrije [Fundamental ideas for teaching geometry]. Matematika i škola, 99, 147–151.
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
Henningsen, M., & Stein, M. (1997). Mathematical tasks and student’s cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549.
Institut für Didaktik der Mathematik. (2007). Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler am Ende der 8. Schulstufe [Standards for the mathematical competencies of Austrian students at the end of the 8th grade]. Alpen-Adria-Universität Klagenfurt.
Johansson, M. (2006). Teaching mathematics with textbooks: A classroom and curricular perspective [Doctoral dissertation, Luleå University of Technology]. Luleå University of Technology. http://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A998959&dswid=-133
Kurnik, Z. (2000). Matematički zadatak [Mathematical task]. Matematika i škola, 7, 51–58. https://mis.element.hr/fajli/545/07-02.pdf
Kuzle, A., & Glasnović Gracin, D. (2020). Making sense of geometry education through the lens of fundamental ideas: An analysis of children’s drawing. The Mathematics Educator, 29(1), 7–52.
Leung, A., & Baccaligni-Franck, A. (Eds.). (2017). Digital technologies in designing mathematics education tasks: Potential and pitfalls. Springer.
Love, E., & Pimm, D. (1996). “This is so”: A text on texts. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (Vol. 1, pp. 371–409). Kluwer International Handbooks of Education, Springer.
Mammana, C., & Villani, V. (Eds.). (1998). Perspectives on the teaching of geometry for the 21st century: An ICMI study. Kluwer Academic Publishers.
Markovac, J. (2001). Metodika početne nastave matematike [Methodology of initial mathematics teaching]. Školska knjiga.
Miklec, D., Jakovljević Rogić, S., & Prtajin, G. (2021a). Moj sretni broj 1 [My lucky number 1]. Školska knjiga.
Miklec, D., Jakovljević Rogić, S., & Prtajin, G. (2021b). Moj sretni broj 2 [My lucky number 2]. Školska knjiga.
Miklec, D., Jakovljević Rogić, S., & Prtajin, G. (2021c). Moj sretni broj 3 [My lucky number 3]. Školska knjiga.
Miklec, D., Jakovljević Rogić, S., & Prtajin, G. (2021d). Moj sretni broj 4 [My lucky number 4]. Školska knjiga.
Ministry of Science and Education. (2019). Kurikulum predmeta Matematika [Curriculum of the school subject Mathematics]. https://narodne-novine.nn.hr/clanci/sluzbeni/2019_01_7_146.html
Organisation for Economic Co-operation and Development. (2003). The PISA 2003 assessment framework – Mathematics, reading, science and problem solving knowledge and skills. OECD. https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33694881.pdf
Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM – Mathematics Education, 33(5), 158–175.
Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. (2016). E-textbooks in/for teaching and learning mathematics: A potentially transformative educational technology. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 636–661). Taylor & Francis.
Pepin, B., Choppin, J., Ruthven, K., & Sinclair, N. (2017). Digital curriculum resources in mathematics education: Foundations for change. ZDM – Mathematics Education, 49, 645–661.
Rezat, S. (2021). How automated feedback from a digital mathematics textbook affects primary students’ conceptual development: Two case studies. ZDM – Mathematics Education, 53(6), 1433–1445. https://doi.org/10.1007/s11858-021-01263-0
Ruthven, K. (2018). Instructional activity and student interaction with digital resources. In L. Fan, L. Trouche, Ch. Qui, S. Rezat, & J. Visnovska (Eds.), Research on mathematics textbooks and teachers’ resources. ICME-13 monographs (pp. 261–275). Springer. https://doi.org/10.1007/978-3-319-73253-4_12
Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189. https://doi.org/10.3102/0034654307313795
Sullivan, P., Clarke, D. M., & Clarke, B. A. (2013). Teaching with tasks for effective mathematics learning. Springer.
Usiskin, Z. (2018). Electronic vs paper textbook presentations of the various aspects of mathematics. ZDM – Mathematics Education, 50(5), 849–861.
Wittmann, E. Ch. (1999). Konstruktion eines Geometriecurriculums ausgehend von Grundideen der Elementargeometrie [Construction of a geometry curriculum based on the basic ideas of elementary geometry]. In H. Henning (Ed.), Mathematik lernen durch Handeln und Erfahrung. Festschrift zum 75. Geburtstag von Heinrich Besuden (pp. 205–223). Bueltmann und Gerriets.
Zhu, Y., & Fan, L. (2006). Focus on the representation of problem types in intended curriculum: A comparison of selected mathematics textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4(4), 609–626.
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

